猪基因组选择育种研究进展Research Progress on the Genomic Selection Breeding in Swine
邢文凯;刘建;刘燊;王闯;雷明刚;
XING Wenkai;LIU Jian;LIU Shen;WANG Chuang;LEI Minggang;College of Animal Science & Technology College of Animal Veterinary Medicine, Huazhong Agricultural University;Jiangxi Zhengbang Breeding Co.LTD;
摘要(Abstract):
全基因组选择是指利用覆盖整个基因组的高密度SNP计算个体的基因组估计育种值(Genomic Estimated Breeding Value,GEBV)。利用全基因组遗传标记信息对个体进行遗传评估,可以通过早期选择缩短世代间隔,提高GEBV的准确性,降低近交系数从而提高种猪的遗传进展。近年来,随着基因分型成本下降,全基因组选择技术越来越多地应用在猪育种工作中。本文主要从全基因组选择的步骤、分型技术和计算模型等方面进行综述,总结全基因组选择在猪育种中的优势和应用情况,对全基因组选择技术在我国猪育种中的应用提出建议。
Genome selection refers to the use of high density single nucleotide polymorphisms(SNPs) covering the whole genome to calculate the genome estimated breeding value of an individual. By using the information of genome-wide genetic markers, generation interval is shortened, genomic estimated breeding values' accuracy are improved, and the coefficient of inbreeding is reduced through early selection, therefore the genetic progresses of breeding pigs are enhanced. In recent years, with the decrease of cost-efficient genotyping, there are an increasing number of genomic selection technology applying in swine breeding. This article reviewed the processes, typing techniques, and computational models of genomic selection. In addition, it summarized the advantages and situation on the genomic selection technology,and the application of genomic selection in swine breeding in China was suggested.
关键词(KeyWords):
全基因组选择;猪;育种;遗传进展
Genomic selection;Swine;Breeding;Genetic progress
基金项目(Foundation): 国家现代工业产业技术体系专项资金(CARS-35);; 江西省重大科技研发专项(20194ABC28008)
作者(Authors):
邢文凯;刘建;刘燊;王闯;雷明刚;
XING Wenkai;LIU Jian;LIU Shen;WANG Chuang;LEI Minggang;College of Animal Science & Technology College of Animal Veterinary Medicine, Huazhong Agricultural University;Jiangxi Zhengbang Breeding Co.LTD;
DOI: 10.19556/j.0258-7033.20200807-04
参考文献(References):
- [1]周磊,杨华威,赵祖凯,等.基因组选择在我国种猪育种中应用的探讨[J].中国畜牧杂志, 2018, 54(3):4-8.
- [2] Wang C, Wang H Y, Zhang Y, et al. Genome-wide analysis reveals artificial selection on coat colour and reproductive traits in Chinese domestic pigs[J]. Mol Ecol Resour, 2015, 15(2):414-424.
- [3]王晨,秦珂,薛明,等.全基因组选择在猪育种中的应用[J].畜牧兽医学报, 2016, 47(1):1-9.
- [4] Hill William G. Applications of population genetics to animal breeding, from wright, fisher and lush to genomic prediction[J].Genetics, 2014, 196(1):1-16.
- [5] Henderson C R. Best linear unbiased estimation and prediction under a selection model[J]. Biometrics, 1975, 31(2):423-447.
- [6] Vergara O D, Elzo M A, Cerón-Mu?oz M F. Genetic parameters and genetic trends for age at first calving and calving interval in an Angus-Blanco Orejinegro-Zebu multibreed cattle population in Colombia[J]. Livest Sci, 2009, 126(1):318-322.
- [7] Meuwissen T H, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics,2001, 157(4):1819-1829.
- [8]谈成,边成,杨达,等.基因组选择技术在农业动物育种中的应用[J].遗传, 2017, 39(11):1033-1045.
- [9]叶健,郑恩琴,胡晓湘,等.基因组选择技术及其在猪育种中的应用探讨[J].中国畜牧杂志, 2017, 53(11):5-10.
- [10]张哲,张勤,丁向东.畜禽基因组选择研究进展[J].科学通报, 2011, 56(26):2212-2222.
- [11] VanRaden P M, Van Tassell C P, Wiggans G R, et al. Invited review:reliability of genomic predictions for North American Holstein bulls[J]. J Dairy Sci, 2009, 92(1):16-24.
- [12] Schena M. Genome analysis with gene expression microarrays[J]. BioEssays, 1996, 18(5):427-431.
- [13] Ramos A M, Crooijmans R P M A, Affara N A, et al. Design of a high density snp genotyping assay in the pig using snps identified and characterized by next generation sequencing technology[J]. PLoS One, 2009, 4(8):e6524.
- [14]王珏,刘成琨,刘德武,等.基于不同密度SNP芯片在杜洛克公猪中的全基因组选择效果分析[J].中国畜牧杂志,2019, 55(12):75-79.
- [15] Elshire R J, Glaubitz J C, Sun Q, et al. A Robust, simple genotyping-by-sequencing(gbs)approach for high diversity species[J]. PLoS One, 2011, 6(5):e19379.
- [16] Baird N A, Etter P D, Atwood T S, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers[J]. PLoS One, 2008, 3(10):e3376.
- [17] Rife T W, Wu S Y, Bowden R L, et al. Spiked GBS:a unified,open platform for single marker genotyping and whole-genome profiling[J]. BMC Genomics, 2015, 16(1):248.
- [18] Wang S, Meyer E, McKay J K, et al. 2b-RAD:a simple and flexible method for genome-wide genotyping[J]. Nat Methods,2012, 9(8):808-810.
- [19] Jiang Z H, Wang H Y, Michal J J, et al. Genome wide sampling sequencing for SNP genotyping:methods, challenges and future development[J]. Int J Biol Sci, 2016, 12(1):100-108.
- [20]肖瑜,马海明.猪的全基因组测序研究进展[J].中国畜牧杂志, 2019, 55(5):15-20.
- [21]李恒德,包振民,孙效文.基因组选择及其应用[J].遗传,2011, 33(12):1308-1316.
- [22] Van Raden P M. Efficient methods to compute genomic predictions[J]. J Dairy Sci, 2008, 91(11):4414-4423.
- [23] Aguilar I, Misztal I, Johnson D L, et al. Hot topic:a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score[J]. J Dairy Sci, 2010, 93(2):743-752.
- [24]赵志达,张莉.基因组选择在绵羊育种中的应用[J].遗传,2019, 41(4):293-303.
- [25] Habier D, Fernando R L, Kizilkaya K, et al. Extension of the bayesian alphabet for genomic selection[J]. BMC Bioinf, 2011,12(1):186.
- [26] Colombani C, Legarra A, Fritz S, et al. Application of Bayesian least absolute shrinkage and selection operator(LASSO)and BayesCπmethods for genomic selection in French Holstein and Montbéliarde breeds[J]. J Dairy Sci, 2013, 96(1):575-591.
- [27] Omer W, Dan G, Saharon R. Multikernel linear mixed models for complex phenotype prediction[J]. Genome Res, 2016,26(7):969-979.
- [28] Yin L L, Zhang H H, Zhou X, et al. KAML:improving genomic prediction accuracy of complex traits using machine learning determined parameters[J]. Genome Biol, 2020, 21(1):146.
- [29] Sun W, Ibrahim J G, Zou F. Genomewide multiple-loci mapping in experimental crosses by iterative adaptive penalized regression[J]. Genetics, 2010, 185(1):349-359.
- [30] Lee J, Kim Y, Cho E, et al. Genomic analysis using bayesian methods under different genotyping platforms in korean duroc pigs[J]. Animals, 2020, 10(5):752.
- [31]王志英,洪磊,李宏伟,等.基于GBLUP和Bayes方法实现山羊体重基因组选择[J].家畜生态学报, 2019, 40(7):22-26.
- [32]尹立林,马云龙,项韬,等.全基因组选择模型研究进展及展望[J].畜牧兽医学报, 2019, 50(2):233-242.
- [33]彭潇,尹立林,梅全顺,等.猪主要经济性状的基因组选择研究[J].畜牧兽医学报, 2019, 50(2):439-445.
- [34] Hayes B J, Bowman P J, Chamberlain A J, et al. Invited review:Genomic selection in dairy cattle:progress and challenges[J]. J Dairy Sci, 2009, 92(2):433-443.
- [35] VanRaden P M. Efficient methods to compute genomic predictions[J]. J Dairy Sci, 2008, 91(11):4414-4423.
- [36] Haberland A M, Pimentel E C G, Ytournel F, et al. Interplay between heritability, genetic correlation and economic weighting in a selection index with and without genomic information[J]. J Anim Breed Genet, 2013, 130(6):456-467.
- [37] Cleveland M A, Hickey J M, Forni S. A common dataset for genomic analysis of livestock populations[J]. G3:Genes,Genomes, Genet, 2012, 2(4):429-435.
- [38] Calus M P L. Veerkamp R F. Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM[J]. J Anim Breed Genet, 2007, 124(6):362-368.
- [39] Goddard M. Genomic selection:prediction of accuracy and maximisation of long term response[J]. Genetica, 2009, 136(2):245-257.
- [40] Zhong S Q, Dekkers J C, Fernando R L, et al. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines:a Barley case study[J]. Genetics, 2009,182(1):355-364.
- [41]赵杨杨,张志鹏,吴昆,等.全基因组选择在奶牛生产中的应用进展[J].河南畜牧兽医(市场版), 2019, 40(8):30-32.
- [42]彭潇.猪不同遗传复杂度性状全基因组选择准确性评估[D].武汉:华中农业大学, 2019:10.
- [43] Van Eenennaam A L, Weigel K A, Young A E, et al. Applied animal genomics:results from the field[J]. Annu Rev Anim Biosci, 2014, 2:105-139.
- [44]王青来,李亚兰.全国首例全基因组选育特级种猪在粤诞生[J].农业知识(科学养殖), 2014(2):25.
- [45] Christensen O F, Madsen P, Nielsen B, et al. Single-step methods for genomic evaluation in pigs[J]. Animal, 2012, 6(10):1565-1571.
- [46] Tribout T, Larzul C, Phocas F. Efficiency of genomic selection in a purebred pig male line[J]. J Anim Sci, 2012, 90(12):4164-4176.
- [47] Akanno E C, Schenkel F S, Sargolzaei M, et al. Opportunities for genome-wide selection for pig breeding in developing countries[J]. J Anim Sci, 2013, 91(10):4617-4627.
- [48] Ostersen T, Christensen O F, Henryon M, et al. Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs[J]. Genet Sel Evol, 2011, 43(1):38.
- [49]张金鑫,唐韶青,宋海亮,等.北京地区大白猪基因组联合育种研究[J].中国农业科学, 2019, 52(12):2161-2170.
- [50] Sonesson A K, Gjerde B, Meuwissen T H. Truncation selection for BLUP-EBV and phenotypic values in fish breeding schemes[J]. Aquaculture, 2004, 243(1):61-68.
- [51] Forni S, Aguilar I, Misztal I. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information[J]. Genet Sel Evol, 2011, 43(1):1.
- [52] Guo X, Christensen O F, Ostersen T, et al. Improving genetic evaluation of litter size and piglet mortality for both genotyped and nongenotyped individuals using a single-step method[J]. J Anim Sci, 2015, 93(2):503-512.
- [53] Lillehammer M, Meuwissen T H, Sonesson A K. Genomic selection for two traits in a maternal pig breeding scheme[J]. J Anim Sci, 2013, 91(7):3079-3087.
- [54]郭猛.联合不同品系大白猪对总乳头数进行全基因组遗传评估[D].武汉:华中农业大学, 2019:41-44.
- 邢文凯
- 刘建
- 刘燊
- 王闯
- 雷明刚
XING Wenkai- LIU Jian
- LIU Shen
- WANG Chuang
- LEI Minggang
- College of Animal Science & Technology College of Animal Veterinary Medicine
- Huazhong Agricultural University
- Jiangxi Zhengbang Breeding Co.LTD
- 邢文凯
- 刘建
- 刘燊
- 王闯
- 雷明刚
XING Wenkai- LIU Jian
- LIU Shen
- WANG Chuang
- LEI Minggang
- College of Animal Science & Technology College of Animal Veterinary Medicine
- Huazhong Agricultural University
- Jiangxi Zhengbang Breeding Co.LTD