动物消化道微生物培养组学研究进展The Application of Microbial Culturomics in Animal Gastrointestinal Tracts
米兰;王佳堃;
MI Lan;WANG Jiakun;Institute of Dairy Science,Zhejiang University;
摘要(Abstract):
自然环境中绝大部分微生物仍“尚未被培养”,这极大限制了人们对微生物功能的研究,以及微生物资源的开发和利用。培养组学基于微生物基因组信息获得目标微生物的最佳生存环境,利用膜扩散型培养技术、微流控型培养技术和细胞分选培养技术等从自然环境中分离、培养“尚未被培养”的微生物,并通过高通量组学技术加以鉴定。已成功应用于小鼠、白蚁、鸡、猪和牛消化道微生物的培养,极大地丰富了动物消化道微生物资源库,为深入探究微生物间及其与宿主间的互作关系提供了保障。本文综述了影响微生物培养的因素、培养组学的分选和鉴定技术、培养组学在动物消化道微生物研究中的应用情况,探讨了培养组学的发展前景和面临的挑战。
Without cultivation,microbial biology,physiology and many questions about the role of microbes in their natural environments remain unclear.So,to improve our understanding of the uncultured majority and promote the development and utilization of microbial resources,it is essential to bring microbes from their natural environments into culture.Highthroughput genomic data can be used to generate the optimum living environments for targeted microbes,then innovative techniques,such as membrane diffusion-based cultivation,microfluidics-based cultivation,and cell sorting-based cultivation are applied to isolate and culture the uncultured majority from their natural environments.Microbial culturomics have been successfully applied to culture novel microbes in the gastrointestinal tracts from mouse,termite,chicken,pig and cow.The application of microbial culturomics greatly enriches the cultured microbial resources of animals,and provides the strain resources for host-microbe interaction researches.In this review,we provide an overview of the possible influencing factors of the microbial cultivation,primary innovative technologies,identification methods and challenge of the microbial culturomics,as well as its' application in animal gastrointestinal tracts.
关键词(KeyWords):
动物消化道;高通量测序;培养组学;微生物;未培养
Animal gastrointestinal tracts;High-throughput sequence;Culturomics;Microbe;Uncultured
基金项目(Foundation): 国家自然科学基金(31973000)
作者(Authors):
米兰;王佳堃;
MI Lan;WANG Jiakun;Institute of Dairy Science,Zhejiang University;
DOI: 10.19556/j.0258-7033.20210412-04
参考文献(References):
- [1]Castelle C J,Banfield J F.Major new microbial groups expand diversity and alter our understanding of the tree of life[J].Cell,2018,172(6):1181-1197.
- [2]彭娜,彭先启,乐敏.微生物菌群培养组学在动物医学中的应用[J].畜牧兽医学报,2020,51(12):2942-2953.
- [3]Lewis W H,Tahon G,Geesink P,et al.Innovations to culturing the uncultured microbial majority[J].Nat Rev Microbiol,2020,1-16.
- [4]Lagier J C,Dubourg G,Million M,et al.Culturing the human microbiota and culturomics[J].Nat Rev Microbiol,2018,16:540-550.
- [5]Zengler K,Zaramela L S.The social network of microorganismshow auxotrophies shape complex communities[J].Nat Rev Microbiol,2018,16(6):383-390.
- [6]Imachi H,Nobu M K,Nakahara N,et al.Isolation of an archaeon at the prokaryote-eukaryote interface[J].Nature,2020,577(7791):519-525.
- [7]Guzman J J,Sousa D Z,Angenent L T.Development of a bioelectrochemical system as a tool to enrich H2-producing syntrophic bacteria[J].Front Microbiol,2019,10:110.
- [8]De Bok F A,Luijten M L,Stams A J.Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei[J].Appl Environ Microbiol,2002,68(9):4247-4252.
- [9]Nadell C D,Xavier J B,Levin S A,et al.The evolution of quorum sensing in bacterial biofilms[J].PLo S Biol,2008,6(1):e14.
- [10]Epstein S S.The phenomenon of microbial uncultivability[J].Curr Opin Microbiol,2013,16(5):636-642.
- [11]Dworkin J,Shah I M.Exit from dormancy in microbial organisms[J].Nat Rev Microbiol,2010,8(12):890-896.
- [12]关健飞,沈智超,曹阳.稀有微生物群落研究进展[J].湖北农业科学,2020,59(15):5-11.
- [13]Ge Z,Girguis P R,Buie C R.Nanoporous microscale microbial incubators[J].Lab Chip,2016,16(3):480-488.
- [14]Cross K L,Campbell J H,Balachandran M,et al.Targeted isolation and cultivation of uncultivated bacteria by reverse genomics[J].Nat Biotechnol,2019,37(11):1314-1321.
- [15]Bartelme R P,Custer J M,Dupont C L,et al.Influence of substrate concentration on the culturability of heterotrophic soil microbes isolated by high-throughput dilution-to-extinction cultivation[J].m Sphere,2020,5:e00024-20.
- [16]Lagier J C,Armougom F,Million M,et al.Microbial culturomics:paradigm shift in the human gut microbiome study[J].Clin Microbiol Infect,2012,18(12):1185-1193.
- [17]阮楚晋,郑小伟,王丽,等.基于流式细胞仪高通量分选的深海微生物单细胞培养[J].微生物学报,2021,61(04):816-827.
- [18]Zhao H,Zhang Y,Xiao X,et al.Different phenanthrenedegrading bacteria cultured by in situ soil substrate membrane system and traditional cultivation[J].Int Biodeter Biodegr,2017,117:269-277.
- [19]Sipkema D,Schippers K,Maalcke W J,et al.Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp[J].Appl Environ Microbiol,2011,77(6):2130-2140.
- [20]Aoi Y,Kinoshita T,Hata T,et al.Hollow-fiber membrane chamber as a device for in situ environmental cultivation[J].Appl Environ Microbiol,2009,75(11):3826-3833.
- [21]Nichols D,Cahoon N,Trakhtenberg E,et al.Use of ichip for high-throughput in situ cultivation of“uncultivable”microbial species[J].Appl Environ Microbiol,2010,76(8):2445-2450.
- [22]Ling L L,Schneider T,Peoples A J,et al.A new antibiotic kills pathogens without detectable resistance[J].Nature,2015,517(7535):455-459.
- [23]Chaudhary D K,Khulan A,Kim J.Development of a novel cultivation technique for uncultured soil bacteria[J].Sci Rep,2019,9(1):1-11.
- [24]Dorofeev A,Grigor’eva N,Kozlov M,et al.Approaches to cultivation of“nonculturable”bacteria:cyclic cultures[J].Microbiology,2014,83(5):450-461.
- [25]Ma L,Datta S S,Karymov M A,et al.Individually addressable arrays of replica microbial cultures enabled by splitting SlipChips[J].Integr Biol (Camb),2014,6(8):796-805.
- [26]Sibbitts J,Sellens K A,Jia S,et al.Cellular analysis using microfluidics[J].Anal Chem,2018,90:65-85.
- [27]Du W,Li L,Nichols K P,et al.Slip Chip[J].Lab Chip,2009,9(16):2286-2292.
- [28]Khater A,Abdelrehim O,Mohammadi M,et al.Picoliter agar droplet breakup in microfluidics meets microbiology application:numerical and experimental approaches[J].Lab Chip,2020,20(12):2175-2187.
- [29]Watterson W J,Tanyeri M,Watson A R,et al.Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes[J].Elife,2020,9:e56998.
- [30]Kennedy D,Wilkinson M G.Application of flow cytometry to the detection of pathogenic bacteria[J].Curr Issues Mol Biol,2017,23:21-38.
- [31]Batani G,Bayer K,Boge J,et al.Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria[J].Sci Rep,2019,9(1):18618.
- [32]Lau A Y,Lee L P,Chan J W.An integrated optofluidic platform for Raman-activated cell sorting[J].Lab Chip,2008,8(7):1116-1120.
- [33]Rahi P,Prakash O,Shouche Y S.Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOFMS) based microbial identifications:challenges and scopes for microbial ecologists[J].Front Microbiol,2016,7:1359.
- [34]Goodfellow M,Sutcliffe I,Chun J.New approaches to prokaryotic systematics[M].San Diego:Academic Press,2014.
- [35]王桢干,周志慧.拉曼光谱在微生物研究中的应用[J].世界最新医学信息文摘,2019,19(71):151-152.
- [36]Liu C,Zhou N,Du M X,et al.The mouse gut microbial biobank expands the coverage of cultured bacteria[J].Nat Commun,2020,11(1):1-12.
- [37]Zhou N,Sun Y T,Chen D W,et al.Harnessing microfluidic streak plate technique to investigate the gut microbiome of Reticulitermes chinensis[J].Microbiology Open,2019,8(3):e00654.
- [38]Medvecky M,Cejkova D,Polansky O,et al.Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures[J].BMC Genomics,2018,19(1):1-15.
- [39]Duquenoy A,Ania M,Boucher N,et al.Caecal microbiota compositions from 7-day-old chicks reared in high-performance and low-performance industrial farms and systematic culturomics to select strains with anti-Campylobacter activity[J].PLo SOne,2020,15(8):e0237541.
- [40]董博,王志林,魏文康,等.哺乳仔猪断奶前后肠道微生物培养组学研究[J].动物营养学报,2021,33(1):175-189.
- [41]Zehavi T,Probst M,Mizrahi I.Insights into culturomics of the rumen microbiome[J].Front Microbiol,2018,9:1999.